These are rough figures from my records, not set out here as clearly as possible.

Assumptions;

1 squ foot $=.093$ squ m .
1cubic $m=35.32$ cubic feet.
1 cubic foot $=0.028$ cubic metres
Floor area $4 \times 4+5 \times 3+$ upstairs $2.5 \times 7=16+15+17.5=48.5 \mathrm{~m} 2$
Wall length 21.5 m

Concrete:

Assume concrete, cement 20 kg bag @ \$9/ bag + sand @ \$25/t + gravel @ \$80/t, and 1 bag yields $=2 \mathrm{cf}$ cement +4 cf sand +2 cf gravel $=8 \mathrm{cf}$ concrete. $=.224$ cubic metres
so I cubic metre of cement needs 4.5 bags of cement + = 10 bags of sand + = 4.5 bags of gravel.

Costs. (Red = checked.)
Sand $\$ 25 / \mathrm{t}$ ($\$ 25$ for $1 \mathrm{t}=25 \times 1.6$ for I m3 $=\$ 40$ So S40/35.3 = $\$ 1.13 / \mathrm{cu} . \mathrm{ft}$. $=1.23 \times 35=\$ 43 / \mathrm{m} 3$
gravel \$ 15/t = \$0.7
$=\$ 24.5 / \mathrm{m} 3$
Sand is $1.6 \mathrm{t} / \mathrm{m} 3$ gravel $1.5 \mathrm{t} / \mathrm{m} 3$
So concrete 1 bag cement $\$ 9+\{2 \mathrm{cf}$ gravel $=. \$ 1.40\}+\{4 \times \$ 1,13\}=. \$ 4.52\}=\$ 14.9$
So 1 bag of cement yields 8 cf concrete costing $\$ 14.9$,
So for 1 m 3 of concrete you need $35.3 / 8$ as much $=$ i.e., 4.35 times as much of all ingredients = \$64.8

So 1 m 3 of concrete costs $\$ 64.8$

PRICES.

Wood Bunnings 120X35 =
\$6.29/M
90×45 (so = 3x2+) = \$4.41
$90 \times 35=\quad \$ 3.17$
$75 \times 45=\quad \$ 3.16 / \mathrm{m}$
3×2 assume $\quad \$ 3.50 / \mathrm{m}$
$75 \times 25=$ assume $\$ 1.50 / \mathrm{m}$
19×12 assume $\$.9$
https://www.bunnings.com.au/products/building-
hardware/timber/framing-timber/structural-pine/untreated-structural-pine
So assume rafters and floor bearers as if $6 \times 1.5^{\prime \prime}$ (piers are close) $=57 / \mathrm{m}$
3×2 at $\$ 3 / \mathrm{m}$
Common brick $\$.99$ Bunnings
Ply c $\$ 30$ for $2.4 \times 1.2 \mathrm{~m}$ sheet $=\$ 10.3 / \mathrm{m} 2$

Fibro" \$8.96/m2
Ant caps c $\$ 3.50$ bunnings, but tiny cost home made is .c $\$ 2.50$
Corrugated iron \$16/m2 Bunnings

EMBODIED ENERGY

Cement mixed $1.33 \mathrm{mj} / \mathrm{kg}$, density 1.4 , so $1400 \mathrm{~kg} / \mathrm{m} 3=1,868 \mathrm{~mJ} / \mathrm{m} 3$
Timber 8.5 density $500 \mathrm{~g} / \mathrm{l}$ mid range
But unnamed source c under 2.5???? so use 4.
Steel 20
Roof tin is my estimate $3.79 \mathrm{~kg} / \mathrm{m} 2$, so @ $20=75.8 \mathrm{MJ} / \mathrm{m} 2$
But table says 34.8
Stainless steel 56
Gravel
Glass 15 googled 13
Glass density is $2.6 \mathrm{t} / \mathrm{m} 3$, so for 3 mm glass, i.e., 330 sheet in a metre $=7.8$ kg/m2
$@ 15 \mathrm{MJ} / \mathrm{kg} 1 \mathrm{MN} 2=7.8 \mathrm{X} 13=101 \mathrm{MJ} / \mathrm{m} 2$
Insulation 88
Clay tile 6.5
Paint water 60
Roofing iron; assume .4 mm thick,
1 sheet $=2 \mathrm{~m} 2$ (Bunnings)
@ . $4 \mathrm{~mm}=200 \mathrm{~cm} 2.4 \times 1 / 100 \mathrm{~cm}=40 \mathrm{cc}$
(https://roofonline.com/weight-of-roofing-materials)
I measured above at $3.7 \mathrm{~kg} / \mathrm{m} 2$, therefore $75.8 \mathrm{mj} / \mathrm{m} 2$
Wood $8.5 \mathrm{MJ} / \mathrm{kg}$
*= checked
Density . $5 . . .=500 \mathrm{~kg} / \mathrm{m} 3=.5 \mathrm{~kg} / 1 \mathrm{litre}=500 \mathrm{~kg} / \mathrm{m} 3=4250 \mathrm{mj} / \mathrm{m} 3$
$120 \times 35=4,200 \mathrm{~mm} 2=42 \mathrm{~cm} 2=4200 \mathrm{~cm} 3 / \mathrm{m} @ .5$ density $=2100 \mathrm{~g} / \mathrm{m}$
$=2.1 \mathrm{~kg} / \mathrm{m} \quad=17.8 \mathrm{MJ} / \mathrm{m}^{* *}$
$90 \times 45=4050 \mathrm{~mm} 222.02$ 17*
$90 \times 35=315015.8^{*}$
$75 \times 45=3375 \quad 16.9$ *
3×23750 18.8*
$75 \times 25=1875 \quad 7.8 .{ }^{*}$
$19 \times 12 \quad 228 \quad 1$

Footings:

Small crushed stone (or blue metal) rammed in trench
23.5 m wall length $\mathrm{x} .45 \mathrm{~m} \times .3 \mathrm{~m} ;=3.2 \mathrm{~m}^{3}$ @\$24.5 m3= \$78.4

If add 6 mm steel reinforcing rods set one above the other in cement, So 2 at $22 \mathrm{~m}=20 \mathrm{~m}$. \$88

Assume $30 \mathrm{~kg} \underline{440 \mathrm{MJ}}$

Set in cement "girder" at core of footing, $22 \mathrm{~m} \times .1 \mathrm{~m} \times .2 \mathrm{~m}$ $=.45 \mathrm{~m}^{3}=.45 \times \$ 64$
\$29
Density $=2.5 \mathrm{~kg} / \mathrm{l} \mathrm{so} 1 \mathrm{~m} 3=2500 \mathrm{~kg}$ and $.45 \mathrm{~m} 3=450 \mathrm{~kg}$
Energy $=1.9 \mathrm{MJ} / \mathrm{kg}$
So energy $=1.9 \times 450=855 \mathrm{MJ}$

Floor:

Rammed earth with plastic damp course and 3 mm cement and chicken wire sealing on top. Could tile over top.

Cement $31 \mathrm{~m} 2 \times 3 \mathrm{~cm}=31 \times .03 \mathrm{~m} 3=.93 \mathrm{~m} 3=1.2 \times \$ 64.75$
\$60
$1.33 \mathrm{mj} / \mathrm{kg}$ (when mixed with sand etc.) $\times 1200 \mathrm{~kg}=1,596 \mathrm{mj}$
$2^{\prime \prime}$ chicken wire, 50 mx .9 m roll, \$65(?) = \$1.44/m2
So 40 mx \$1.44 =
\$58
$30 \mathrm{~kg} \times 20 \mathrm{MJ}=600 \mathrm{MJ}$

Membrane waterproofing. Assume \$50 ?

Assume10kg x 80mj/k=800 MJ
Walls. Length 23.5 m
30 cm thick, rammed earth or cob.
Lower level 23.5 m long $\times 2.5 \mathrm{~m}$ high $=59 \mathrm{~m} 2 \times .3 \mathrm{~m}=\underline{20 \mathrm{~m} 3}$,
Upper level triangles $12.5 \mathrm{~m} 2 \times .3=\underline{3.8 \mathrm{~m} 3}$
Total 24 m 3 but windows to subtract
minus windows 2@1.2x.9 $=1.08 \mathrm{~m} 2$

$$
\begin{gathered}
2 @, 8 \times .9=1.4 \mathrm{~m} 2 \\
=2.5 \mathrm{~m} 3 \times .3=.8 \mathrm{~m} 3
\end{gathered}
$$

Minus 2 doors $=1.7 \mathrm{~m} 2$ each $=3.4 \mathrm{~m} 2$ saves $3.4 x .3 \mathrm{~m} 3=\underline{1.2 \mathrm{~m} 3}$ earth

So Total earth in walls is $24-2=\mathbf{2 2} \underline{\mathbf{m} 3}$
$=$ tank 2 m high 1.9 m diameter
3 m high $\mathrm{r}=2.7 \mathrm{~m}$
5,500 gal

At 3 cf per barrow load = 1/12 m3, or 8 loads per m3, you need 178 loads

Tin white ant capping, homemade, 22 mx .45 m wide $=10 \mathrm{~m} 2$
One $8 x 4 \mathrm{ft}$ sheets i.e., $2.4 \mathrm{~m} \times 1.20 \mathrm{~m}=2.9 \mathrm{~m} 2 @ \$ 60$? $/$ sheet $=\$ 20.7 / \mathrm{m} 2$. So $10 \times \$ 20.7=$ \$207

Assume 10kg = 200 MJ

Reinforcing braces ; long 4 @ c 8m=32 m @ \$3 stainless
\$60
$30 \mathrm{mj} / \mathrm{kg}$ stainless

Assume $5 \mathrm{~kg} @ 35 \mathrm{MJ}=$

165 MJ

Windows:

Home made. Housing surrounds are pre cast 3 cm cement + chicken wire., (to prevent white ants), hinges bolted into
total length top and sides and sills, 17.4 m
volume average $3 \mathrm{~cm} \times 7.5 \mathrm{~cm}=23 \mathrm{~cm} 2 \times 17.4 \mathrm{~m}=.023 \mathrm{~m} 2 \times 17.40 \mathrm{~m} 2=.4 \mathrm{~m} 2$ concrete=
Each window two casement panels, hinged at sides.
Window frame wood $19 \times 50 \mathrm{~mm} \times 17 \mathrm{~m}$
$12 \times 19 \mathrm{~mm}$ strip $\times 17 \mathrm{~m}$
= c 38m x \$1 ? =
\$38
$17 \mathrm{~m} 50 \times 19$ assume $3 \mathrm{mj} / \mathrm{m}=51 \mathrm{mj}$
17 m 19x15@ 1mj = 17mj

Glass from $\$ 38 / \mathrm{m} 2$ up, assume $\$ 50 / \mathrm{m} 2$, so for 2.5 m 2
\$125
@ 101MJ/m2 = 250 MJ
Putty.
\$10
Like paint...?? 60 mj
Doors;

Bunnings external \$260-360.

Three. Homemade $\$ 100$ (redo; should be much less) thick ply, $3+x 1^{\prime \prime}$ each side + lock. \$150

Housing/surrounds 3 cm cement $5.5 \mathrm{mx} 23 \mathrm{~cm} 2=.13 \mathrm{~m} 2=$ \$9 Door knobs and lock, Bunnings from \$11, assume 3 @ $\$ 20=$ \$60

150??

Upper floor.

Bearers 13 spaced at $60-\mathrm{cm}=\mathrm{c} 58 \mathrm{~m} 2$.
Bunnings rough 6x1, \$6.3
\$365
$58 \times 17.8=1,032 \mathrm{MJ}$
So
\$100
Reinforcing?? By 6 mm steel rods diagonally stressing each second bearer, 42 m =7 @ 3.5m =25m x \$2/m =
\$50
Or could be supported by diagonals from roof bearers above...

Floor, Yellow tongue panels, c 38 m 22.9 m 2 costs $\$ 42$,
so $31.5 \mathrm{~m} 2=\$ 14.5 / \mathrm{m} 2 \mathrm{so}=$
\$457
But edges need not be yellow tongue...ignore??

Ply is 15 , so assume 60????
Weight?

Stairs 2@3m+(17@60cm steps, of c120x 3cm wood, = 10m)=16m@\$6.3m= \$101*

285mj

Roof
10 undressed bearers 125 ?x35, spaced at $.8 \mathrm{~m}, \times 4.5 \mathrm{~m}$ to enable eaves $=90 \mathrm{mx}$ \$6.3/m2 = \$567*

1602 mj

Battens for iron, $6 \times 7 \mathrm{~m}=42$ of 75×25 SW @ $\$ 3$??
\$126

Tin -- area of floor 31 m 2 , so area roofed $=\mathrm{c} 43 \mathrm{~m} 2$
Multiply by 1.3 for pitch/peak $=52 \mathrm{~m} 2$
at $\$ 15$ for $.8 \mathrm{~m} 2=\$ 19 / \mathrm{m} 2$,
\$988
CHECKING
$52 \mathrm{~m} 2 \times 76 \mathrm{MJ} / \mathrm{m} 2=3,952 \mathrm{MJ}$
But new figure is 35 so 1820

End walls upstairs.

$7.5 \mathrm{~m} 2+3.75+3 \mathrm{~m} 2$ outside $=14.5$ minus 1.4 windows $=\underline{13 \mathrm{~m} 2}$
waterproof + inside ply (Below).
Studs 13 m

Lining.

41 m 2 upstairs roof $=@ \$ 9 \mathrm{~m} 2$ for fibro
\$370

$15 \mathrm{mj} / \mathrm{m} 2$ so 600 MJ

Insulation

end walls upstairs 13 m 2
Roof 8 m slopes $\times 6.8$ av length $=55 \mathrm{~m} 2$
Total $68 \mathrm{m2}=x \$ 7.5=$
Google $\$ 50$ for $6 \mathrm{~m} 2=\$ 7.5 / \mathrm{m} 2$, so
\$510

Table says $139 \mathrm{mj} / \mathrm{m} 3$ so if $3^{\prime \prime}$ then $13.3 / \mathrm{m} 2$, so 139 mj for 13.3 m , so you
need
5 packs so $5 \times 139 \mathrm{mj}=695 \mathrm{mj}$

Bathroom, laundry, toilet
Benches, not appliances
Toilet unit \$150
Sink + taps ??\$100
Shower + taps ?? \$60
Washing tum \$150

Lighting; 4 LEDs, switches, wire ??\$60

```
Plumbing pipe Polypipe + fittings $100
```


Fasteners.

Paint

Assume \$13/I,
earth wall inside $=75 \mathrm{~m} 2$, (ignoring windows and doors assuming those $=$ cupboards etc.
roof $9 \times 8.5=77 \mathrm{~m} 21$ of Dulux covers 16 m 2 ; so 4 tins $=64 \mathrm{~m} 2$ paint \$150??
Floor included??

```
4 tins - 16 litres =
Tank
```

Total; New tally MJ

| Footing | $120 \quad 97$ | 1307 if cement |
| :--- | :--- | :--- | :--- |

Floor	136	168	2996

Walls $390267 \quad 365$
Windows $125199 \quad 327$
Doors $220220 \quad 150$

Upper floor
bearers 3641032

Stairs $101 \quad 285$
Yellow tongue 4571800
Doors $210220 \quad 150$

Roof

Bearers	567	1665
Battens	126	in
tin	3000988	1820
Lining	$969 \quad 370$	600
Insulation	224	510
Paint	150	595

Toilet unit \$150
Sink + taps ??\$100
Shower + tap \$60 ??
Washing tub \$150
Lighting $\quad \$ 60$
Plumbing \$100 770

New $\$ 7000=\$ 149 / m 2$

Minimal $(\$ 150,000)$ house $=x 21 / 1$
But average house is $186 \mathrm{~m} 2=\mathrm{x} 2.86$ times the area. $=\mathrm{x}$

Cost per m2 \$1332/149= c 9/1
These two should be the same; but the two assumptions are from different sources.

